Mechanical and electrical properties of ultra-thin chips and flexible electronics assemblies during bending

نویسندگان

  • D. A. van den Ende
  • H. J. van de Wiel
  • R. H. L. Kusters
  • Ashok Sridhar
  • J. F. M. Schram
  • Maarten Cauwe
  • Jeroen van den Brand
چکیده

Ultra-thin chips of less than 20 lm become flexible, allowing integration of silicon IC technology with highly flexible electronics such as food packaging sensor systems or healthcare and sport monitoring tags as wearable patches or even directly in clothing textile. The ultra-thin chips in these products will be bent to a very high curvature, which puts a large strain on the chips during use. In this paper a modified four-point bending method is presented, which is capable of measuring chip stress at high curvatures. The strength of several types of ultra-thin chips is evaluated, including standalone ultra-thin test chips and back-thinned 20 lm thick microcontrollers, as well as assemblies containing integrated ultra-thin microcontroller chips. The effect of chip thickness, bending direction and backside finish on strength and minimum bending radius is investigated using the modified four point bending method. The effect of bonding ultra-thin chips to flexible foils on the assembly strength and minimum bending radius is evaluated as well as the effect of bending on electrical properties of the bonded microcontroller dies. 2014 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High Curvature Bending of Ultra-Thin Chips and Chip-on-Foil Assemblies

Introduction Ultra-thin chips of less than 20μm become flexible, allowing integration of silicon IC technology with highly flexible electronics. This combination allows for highly intelligent products of unprecedented thinness, flexibility and cost. Examples include sensor systems integrated into food packaging or healthcare and sport monitoring tags as wearable patches or even directly in clot...

متن کامل

Ultra-thin Silicon Chips in Flexible Microsystems

With the growing demand for mechanically flexible electrical systems and the increasing level of integration of electrical assemblies, hybrid build-ups combining polymer substrates and ultra-thin flexible silicon chips (system-in-foil) are getting more and more important. These systems need thin chips which maintain their functionality even in bent condition as well as reliable handling and ass...

متن کامل

Super Thin Flip Chip Assemblies on Flex Substrates - Adhesive Bonding and Soldering Technology – Reliability Investigations and Applications

Thinned silicon chips with very thin bumps (5-7μm) mounted on flexible substrates open up new dimensions in packaging technologies. The use of flexible substrates enables a large variety of geometric possibilities including folding and bending. Conventional flip chip technology using pick&place and standard reflow processes is not suitable for the assembly of ultra thin components. This is base...

متن کامل

Mechanical Strain for 0 . 16 m nMOSFET on 30 m Si - Substrate

This paper reports the successful substrate transfer based on standard IC processing to an alternative substrate e.g. plastic. The device on ultra-thin Si substrate using grinding backside Si and thermo-compression bonding process is proposed. Acceptable electrical performances are achieved means that the substrate transfer process is controlled well. The DC characteristics of nMOSFETs as a fun...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Microelectronics Reliability

دوره 54  شماره 

صفحات  -

تاریخ انتشار 2014